Can school breakfast program participation change rural adolescents’ purchasing behaviors in food stores and restaurants?

Caitlin Eicher Caspi
Assistant Professor, University of Minnesota
Presenter Disclosures

Caitlin Eicher Caspi

The following personal financial relationships with commercial interests relevant to this presentation existed during the past 12 months:

No relationships to disclose
Acknowledgements

• Grant R01HL113235 from the National Heart Lung and Blood Institute
• Grant UL1TR000114 from the National Center for Advancing Translational Sciences (NCATS) for data management
• Participating schools
• University of Minnesota Extension staff
• Community Blueprint
• All study staff
The study was funded in February 2013 by the National Institutes of Health
Our Partners

- HUNGER-FREE MINNESOTA
- University of Minnesota Extension
- Minnesota Department of Education
- Community Blueprint
- Children’s Defense Fund
- MSNA - MN School Nutrition Association
- St. Catherine University

Kathleen Milbrath
School Meals Specialist
The food environment among youth

• Visits to food establishment (retail and restaurants) are common among urban adolescents
 • Corner store visits occur daily or multiple times a week a
 • Students visit fast food outlets on the way to and from school b
 • Associated with poorer youth dietary behaviors c
• Few studies on food establishment use among rural adolescents
 • Rural adolescents face an increased risk of obesity d
 • Food exposures inside and outside the school may influence youth dietary choices
• In Minnesota, rural schools have:
 • More competitive food venues available
 • More sports drinks and salty snacks available e

a Lent et al, \textit{Public Health Nutr}, 2015
b Velazquez et al., \textit{J Acad Nutr Diet}, 2015
c He, \textit{Public Health Nutr}, 2012
d Johnson & Johnson, Child Obes, 2015
e Caspi, \textit{J Acad Nutr Diet}, 2015
The food environment and school meals

• Local food establishments may draw students away from eating meals at school
 • Low-income high-school students 4.2% less likely to participate in school lunch for each fast food restaurant in zip code \(^a\)
 • Open-campus environment associated with increased fast-food consumption at lunchtime \(^b\)

• Gaps in research
 • Longitudinal studies
 • Studies focused on rural areas
 • The role of school breakfast programs (vs. school lunch)

About the School Breakfast Program (SBP)

- Like the National School Lunch Program (NSLP)
 - Free/reduced price meals available
 - Have nutrition standards based on the Dietary Guidelines for Americans
- Unlike the NSLP
 - Participation in the school breakfast program is associated with lower body mass index (BMI)\(^a\)
 - Participation is low \(^b\)
 - In 2012 12.9 million/day vs. 31 million per day for NSLP
- Habitual participation in the school breakfast program could influence food purchasing outside of school by reducing hunger among students

\(^a\) Gleason & Dodd, *J Am Diet Assoc*, 2009

Purpose of the study

• Aims:
 • Describe the frequency of food environment use among rural high-school students
 • To test whether an increase in school breakfast participation over time leads to a decrease in use of stores and restaurants around schools
 • Conducted as part of Project BreakFAST
Primary aim: improve participation in the SBP among high school students
Main Project BreakFAST
Intervention Components

• School breakfast in carts outside the cafeteria (Grab and Go)
• Alternative time to access breakfast (Second Chance breakfast)
• Student led SBP marketing campaign
Study Methods

- Screened all 9th and 10th graders and enrolled a cohort of “breakfast skippers” (eat breakfast <3 times/week)
- At each school, 50-75 eligible students randomly selected to participate; minority students were oversampled
- 904 enrolled
- Online surveys conducted at baseline and follow-up
Measures: School breakfast participation (SBP)

• Schools provided administrative data on school breakfast participation over 2 years
 • 2013-2014 (before the intervention)
 • 2014-2015 (year of the intervention)

• $SBP = \frac{\text{# of days that a student purchased a fully-reimbursable school breakfast}}{\text{# of days that student attended school}} \times 100$

• Change in SBP: change in the proportion of days that each student purchased school breakfast between the two years of data
Measures: Food establishment use

During a normal school week, how many days per week did you get:

- breakfast at a fast food restaurant
- breakfast at another restaurant
- breakfast at a gas station or convenience store
- breakfast at another small food store
- lunch at a fast food restaurant or other restaurant
- lunch at a convenience store, gas station or other small food store
- food or beverages at a fast food restaurant or other restaurant on the way home from school
- food or beverages at a convenience store, gas station, or other small food store on the way home from school

- Response range 0 to 5
- Only students in Wave 2 included (n = 404)
 - 6 / 8 questions were only asked at both time points in Wave 2
- Change in food establishment purchases was dichotomous
 - ‘Decrease’ in the number of days per week vs. ‘No change or increase’ from baseline to follow-up
Analysis

• Descriptive statistics for student characteristics
• Longitudinal analysis used generalized linear mixed models
• Reported odds ratios and 95% CI
• Models included:
 • Random effect of school
 • Fixed effects of SBP, age, gender, free and reduced priced meal eligibility, and race
Results: Participant characteristics

Student characteristics at baseline

<table>
<thead>
<tr>
<th></th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=404</td>
</tr>
<tr>
<td>Grade level</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>51%</td>
</tr>
<tr>
<td>10</td>
<td>49%</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>54%</td>
</tr>
<tr>
<td>M</td>
<td>46%</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>67%</td>
</tr>
<tr>
<td>Non-white</td>
<td>33%</td>
</tr>
<tr>
<td>Free/reduced price meal eligibility</td>
<td></td>
</tr>
<tr>
<td>Full priced</td>
<td>65%</td>
</tr>
<tr>
<td>Free/reduced</td>
<td>35%</td>
</tr>
<tr>
<td>Transportation to school by car</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>63%</td>
</tr>
<tr>
<td>No</td>
<td>37%</td>
</tr>
</tbody>
</table>

Mean (SD)

| % school breakfast participation (SBP) | 14.0 (20.6) |

No characteristics statistically significantly associated with use of the food environment near the school.
Results: Use of food establishments

| Students reporting use of food establishments at least once in a normal week (baseline), n = 404 |
|---|---|
| For breakfast | 18% |
| For lunch | 27% |
| On the way home from school | 37% |
| Any use of food establishments in the last week | 50% |
Results: Change in SBP and food establishment use

<table>
<thead>
<tr>
<th>Change in getting...</th>
<th>n</th>
<th>% who decreased</th>
<th>Adjusted odds of a decrease (95% CI)*†</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakfast at a fast food restaurant</td>
<td>356</td>
<td>8%</td>
<td>0.99 (0.98, 1.01)</td>
<td>0.54</td>
</tr>
<tr>
<td>Breakfast at another restaurant</td>
<td>354</td>
<td>5%</td>
<td>0.99 (0.96, 1.01)</td>
<td>0.19</td>
</tr>
<tr>
<td>Breakfast at a gas station or convenience store</td>
<td>356</td>
<td>9%</td>
<td>0.98 (0.96, 1.00)</td>
<td>0.04</td>
</tr>
<tr>
<td>Breakfast at another small food store</td>
<td>355</td>
<td>5%</td>
<td>0.98 (0.96, 1.01)</td>
<td>0.19</td>
</tr>
</tbody>
</table>

*OR is the odds of a decrease in food establishment visits, given a 1% increase in school breakfast participation

†Models included random effect of school and fixed effects of school breakfast participation, age, gender, free and reduced priced meal eligibility, and race
Limitations

• Alternative explanations for changes in food establishments use are possible
 • E.g., changes in activity spaces, peer influences, and after-school commitments among adolescents
• Food establishment data were self reported and did not capture the specific food establishments that students were exposed to
• Limited generalizability outside of the study area and study population
Conclusions

• Among rural high-school breakfast-skippers, purchasing foods and beverages at stores and restaurants is common.
• School breakfast participation may have a modest impact on student purchases outside of school.
• Additional research is needed to rule out other causes of changing meal patterns among high-school students over time.
Questions?